Astrometric Observation Techniques

David J. Tholen
Institute for Astronomy
University of Hawaii

South Africa Workshop 2014 March 10

Hardware Concerns

Shutter timing

accurate clock isn't enough

Pixel size

Nyquist sampling of seeing disk for highest accuracy but a pixel 60% of seeing disk may improve detectability

Filter choice

work unfiltered for greatest depth may be fringing issues; consider high-pass filter low altitude sites will suffer from dispersion the most report the bandpass of the reference source, not the filter!

Binning by 1, 2, 3, 4, 6, 9

Reference Catalog

. UCAC4

very accurate, all-sky, but shallow

USNO-B1.0

deep, all-sky, but biased with lots of bogus doubles mediocre photometry (B and R bands)

. 2MASS

very accurate, moderately dense, but no proper motions good photometry (infrared JHK bands)

• PPMXL

merger of USNO-B1.0, 2MASS, PPMX deep, all-sky, less biased, still has bogus doubles

Reference Catalog, continued

. SDSS

not all-sky (haven't used it, so no experience)

Pan-STARRS

not all-sky, not yet public, 2MASS-based at the moment

Gaia

first release maybe two years from now? highest accuracy, comparable depth to USNO-B / PPMXL all-sky, good photometry, good proper motions The Holy Grail

Software Concerns

- Herbert Raab's Astrometrica
 can find moving objects for you
 can identify known objects for you
 prepares MPC reports
 can't handle trailed images
- Bob Denny's PinPoint
 highly automated
- Custom software
 lets you do whatever you want expensive

Observing Techniques

- Develop an exposure time calculator
 every 0.38 mag fainter doubles exposure
 doubling the SNR requires 4 times the exposure
 half the seeing doubles the SNR (sky limited)
- Aim for SNR of 5-10
 anything less leads to questionable detections law of diminishing returns for more
- Remember, asteroids vary in brightness!
 rotational lightcurve
 orbital lightcurve
 eclipse events in binaries
 poorly known phase function
 errors in the absolute magnitudes

Observing Techniques, continued

Non-sidereal tracking or autoguiding makes it easier to reach fainter magnitudes. Stacking of many short exposures can achieve a similar effect at the expense of multiple readouts, but exposure times need to be limited to however long it takes the object to move a seeing disk.

Questions?